Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Curr Res Transl Med ; 70(3): 103334, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35193070

RESUMO

PURPOSE OF THE STUDY: Long-term graft survival rates after renal transplantation are still poor. We aimed to build an early predictor of an established long-term outcomes marker, the estimated glomerular filtration rate (eGFR) one year post-transplant (eGFR-1y). MATERIALS AND METHODS: A large cohort of 376 patients was characterized for a multi-level bio-marker panel including gene expression, cytokines, metabolomics and antibody reactivity profiles. Almost one thousand samples from the pre-transplant and early post-transplant period were analysed and employed for machine learning-assisted prediction. RESULTS: Pre-transplant data led to a prediction achieving a Pearson's correlation coefficient of r=0.38 between measured and predicted eGFR-1y. Two weeks post-transplant, the correlation was improved to r=0.63, and at the third month, to r=0.76. eGFR values were stable throughout the first post-transplant year. Several characteristics were predictive for eGFR, including age of donor and recipient, body mass index, HLA mismatch, cytomegalovirus mismatch and valganciclovir prophylaxis. Additionally, a subset of 19 nuclear magnetic resonance bins of the urine metabolome data was shown to have potential applications in non-invasive eGFR monitoring. Importantly, we identified the expression of the genes TMEM176B and HMMR as potential prognostic markers for changes in the eGFR after the second post-transplantation week. CONCLUSIONS: Our multi-center, multi-level data set represents a milestone in the efforts to predict transplant outcome. While an acceptable predictive capacity was achieved, we are still far from predicting changes in the eGFR precisely. Additional studies employing further marker panels are needed to establish predictors of eGFR-1y for clinical application; herein, gene expression markers seem to hold the most promise.


Assuntos
Transplante de Rim , Biomarcadores , Taxa de Filtração Glomerular , Sobrevivência de Enxerto , Humanos , Transplante de Rim/efeitos adversos , Fatores de Tempo , Doadores de Tecidos
2.
Transpl Int ; 34(9): 1680-1688, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34448272

RESUMO

Epstein-Barr virus (EBV) reactivation is a very common and potentially lethal complication of renal transplantation. However, its risk factors and effects on transplant outcome are not well known. Here, we have analysed a large, multi-centre cohort (N = 512) in which 18.4% of the patients experienced EBV reactivation during the first post-transplant year. The patients were characterized pre-transplant and two weeks post-transplant by a multi-level biomarker panel. EBV reactivation was episodic for most patients, only 12 patients showed prolonged viraemia for over four months. Pre-transplant EBV shedding and male sex were associated with significantly increased incidence of post-transplant EBV reactivation. Importantly, we also identified a significant association of post-transplant EBV with acute rejection and with decreased haemoglobin levels. No further severe complications associated with EBV, either episodic or chronic, could be detected. Our data suggest that despite relatively frequent EBV reactivation, it had no association with serious complications during the first post-transplantation year. EBV shedding prior to transplantation could be employed as biomarkers for personalized immunosuppressive therapy. In summary, our results support the employed immunosuppressive regimes as relatively safe with regard to EBV. However, long-term studies are paramount to support these conclusions.


Assuntos
Infecções por Vírus Epstein-Barr , Transplante de Rim , Transtornos Linfoproliferativos , DNA Viral , Infecções por Vírus Epstein-Barr/etiologia , Herpesvirus Humano 4/genética , Humanos , Transplante de Rim/efeitos adversos , Masculino , Fatores de Risco
3.
Front Med (Lausanne) ; 8: 780585, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35071266

RESUMO

Background: In an earlier monocentric study, we have developed a novel non-invasive test system for the prediction of renal allograft rejection, based on the detection of a specific urine metabolite constellation. To further validate our results in a large real-world patient cohort, we designed a multicentric observational prospective study (PARASOL) including six independent European transplant centers. This article describes the study protocol and characteristics of recruited better patients as subjects. Methods: Within the PARASOL study, urine samples were taken from renal transplant recipients when kidney biopsies were performed. According to the Banff classification, urine samples were assigned to a case group (renal allograft rejection), a control group (normal renal histology), or an additional group (kidney damage other than rejection). Results: Between June 2017 and March 2020, 972 transplant recipients were included in the trial (1,230 urine samples and matched biopsies, respectively). Overall, 237 samples (19.3%) were assigned to the case group, 541 (44.0%) to the control group, and 452 (36.7%) samples to the additional group. About 65.9% were obtained from male patients, the mean age of transplant recipients participating in the study was 53.7 ± 13.8 years. The most frequently used immunosuppressive drugs were tacrolimus (92.8%), mycophenolate mofetil (88.0%), and steroids (79.3%). Antihypertensives and antidiabetics were used in 88.0 and 27.4% of the patients, respectively. Approximately 20.9% of patients showed the presence of circulating donor-specific anti-HLA IgG antibodies at time of biopsy. Most of the samples (51.1%) were collected within the first 6 months after transplantation, 48.0% were protocol biopsies, followed by event-driven (43.6%), and follow-up biopsies (8.5%). Over time the proportion of biopsies classified into the categories Banff 4 (T-cell-mediated rejection [TCMR]) and Banff 1 (normal tissue) decreased whereas Banff 2 (antibody-mediated rejection [ABMR]) and Banff 5I (mild interstitial fibrosis and tubular atrophy) increased to 84.2 and 74.5%, respectively, after 4 years post transplantation. Patients with rejection showed worse kidney function than patients without rejection. Conclusion: The clinical characteristics of subjects recruited indicate a patient cohort typical for routine renal transplantation all over Europe. A typical shift from T-cellular early rejections episodes to later antibody mediated allograft damage over time after renal transplantation further strengthens the usefulness of our cohort for the evaluation of novel biomarkers for allograft damage.

4.
EBioMedicine ; 48: 505-512, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31648995

RESUMO

BACKGROUND: To validate a novel method for post-transplant surveillance to detect kidney allograft rejection via a characteristic constellation of the urine metabolites alanine, citrate, lactate, and urea investigated by nuclear magnetic resonance (NMR) spectroscopy a first prospective, observational study was performed. METHODS: Within the UMBRELLA study 986 urine specimens were collected from 109 consecutively enrolled renal transplant recipients, and metabolite constellations were analyzed. A metabolite rejection score was calculated and compared to histopathological results of corresponding indication and protocol allograft biopsies (n = 206). FINDINGS: The metabolite constellation was found to be a useful biomarker to non-invasively detect acute allograft rejection (AUC = 0.75; 95% confidence interval (CI) 0.68-0.83; based on 46 cases and 520 control samples). Combined analysis of the metabolite rejection score and the estimated glomerular filtration rate (eGFR) at the time of urine sampling further improved the overall test performance significantly (AUC = 0.84; 95% CI 0.76-0.91; based on 42 cases and 468 controls). Regarding the time course analysis in patients without rejection episodes the test results remained well below a diagnostic threshold associated with high risk of acute rejection. In other cases, a marked increase above this threshold indicated acute allograft rejection already six to ten days before diagnostic renal biopsies were performed. INTERPRETATION: A combination of an NMR-based urine metabolite analysis and eGFR is promising as a non-invasive test for post-transplant surveillance and to support decision making whether renal allografts need histopathological evaluation.


Assuntos
Biomarcadores/urina , Rejeição de Enxerto/etiologia , Rejeição de Enxerto/metabolismo , Transplante de Rim , Adolescente , Adulto , Idoso , Biópsia , Feminino , Taxa de Filtração Glomerular , Rejeição de Enxerto/diagnóstico por imagem , Rejeição de Enxerto/urina , Humanos , Testes de Função Renal , Transplante de Rim/efeitos adversos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Curva ROC , Transplante Homólogo , Adulto Jovem
5.
Metabolomics ; 14(9): 116, 2018 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-30830387

RESUMO

INTRODUCTION: Allograft rejection is still an important complication after kidney transplantation. Currently, monitoring of these patients mostly relies on the measurement of serum creatinine and clinical evaluation. The gold standard for diagnosing allograft rejection, i.e. performing a renal biopsy is invasive and expensive. So far no adequate biomarkers are available for routine use. OBJECTIVES: We aimed to develop a urine metabolite constellation that is characteristic for acute renal allograft rejection. METHODS: NMR-Spectroscopy was applied to a training cohort of transplant recipients with and without acute rejection. RESULTS: We obtained a metabolite constellation of four metabolites that shows promising performance to detect renal allograft rejection in the cohorts used (AUC of 0.72 and 0.74, respectively). CONCLUSION: A metabolite constellation was defined with the potential for further development of an in-vitro diagnostic test that can support physicians in their clinical assessment of a kidney transplant patient.


Assuntos
Aloenxertos , Rejeição de Enxerto/metabolismo , Rejeição de Enxerto/urina , Rim/metabolismo , Estudos de Coortes , Humanos , Rim/diagnóstico por imagem
6.
PLoS One ; 8(10): e77491, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24204844

RESUMO

Despite significant methodological advances in protein structure determination high-resolution structures of membrane proteins are still rare, leaving sequence-based predictions as the only option for exploring the structural variability of membrane proteins at large scale. Here, a new structural classification approach for α-helical membrane proteins is introduced based on the similarity of predicted helix interaction patterns. Its application to proteins with known 3D structure showed that it is able to reliably detect structurally similar proteins even in the absence of any sequence similarity, reproducing the SCOP and CATH classifications with a sensitivity of 65% at a specificity of 90%. We applied the new approach to enhance our comprehensive structural classification of α-helical membrane proteins (CAMPS), which is primarily based on sequence and topology similarity, in order to find protein clusters that describe the same fold in the absence of sequence similarity. The total of 151 helix architectures were delineated for proteins with more than four transmembrane segments. Interestingly, we observed that proteins with 8 and more transmembrane helices correspond to fewer different architectures than proteins with up to 7 helices, suggesting that in large membrane proteins the evolutionary tendency to re-use already available folds is more pronounced.


Assuntos
Algoritmos , Proteínas de Membrana , Modelos Moleculares , Animais , Archaea/química , Bases de Dados de Proteínas , Evolução Molecular , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/classificação , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Análise de Sequência de Proteína , Homologia Estrutural de Proteína
7.
Biomed Res Int ; 2013: 878374, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23865070

RESUMO

INTRODUCTION: Spectroscopic analysis of urine samples from laboratory animals can be used to predict the efficacy and side effects of drugs. This employs methods combining (1)H NMR spectroscopy with quantification of biomarkers or with multivariate data analysis. The most critical steps in data evaluation are analytical reproducibility of NMR data (collection, storage, and processing) and the health status of the animals, which may influence urine pH and osmolarity. METHODS: We treated rats with a solvent, a diuretic, or a nephrotoxicant and collected urine samples. Samples were titrated to pH 3 to 9, or salt concentrations increased up to 20-fold. The effects of storage conditions and freeze-thaw cycles were monitored. Selected metabolites and multivariate data analysis were evaluated after (1)H NMR spectroscopy. RESULTS: We showed that variation of pH from 3 to 9 and increases in osmolarity up to 6-fold had no effect on the quantification of the metabolites or on multivariate data analysis. Storage led to changes after 14 days at 4°C or after 12 months at -20°C, independent of sample composition. Multiple freeze-thaw cycles did not affect data analysis. CONCLUSION: Reproducibility of NMR measurements is not dependent on sample composition under physiological or pathological conditions.


Assuntos
Criopreservação , Espectroscopia de Ressonância Magnética , Manejo de Espécimes/métodos , Urina/química , Animais , Butadienos/farmacologia , Feminino , Congelamento , Furosemida/farmacologia , Nível de Saúde , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Masculino , Metaboloma/efeitos dos fármacos , Ratos , Ratos Wistar , Reprodutibilidade dos Testes , Cloreto de Sódio/farmacologia
8.
Proteins ; 80(3): 839-57, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22213543

RESUMO

Structural bioinformatics of membrane proteins is still in its infancy, and the picture of their fold space is only beginning to emerge. Because only a handful of three-dimensional structures are available, sequence comparison and structure prediction remain the main tools for investigating sequence-structure relationships in membrane protein families. Here we present a comprehensive analysis of the structural families corresponding to α-helical membrane proteins with at least three transmembrane helices. The new version of our CAMPS database (CAMPS 2.0) covers nearly 1300 eukaryotic, prokaryotic, and viral genomes. Using an advanced classification procedure, which is based on high-order hidden Markov models and considers both sequence similarity as well as the number of transmembrane helices and loop lengths, we identified 1353 structurally homogeneous clusters roughly corresponding to membrane protein folds. Only 53 clusters are associated with experimentally determined three-dimensional structures, and for these clusters CAMPS is in reasonable agreement with structure-based classification approaches such as SCOP and CATH. We therefore estimate that ∼1300 structures would need to be determined to provide a sufficient structural coverage of polytopic membrane proteins. CAMPS 2.0 is available at http://webclu.bio.wzw.tum.de/CAMPS2.0/.


Assuntos
Biologia Computacional/métodos , Proteínas/química , Animais , Análise por Conglomerados , Bases de Dados de Proteínas , Humanos , Cadeias de Markov , Modelos Moleculares , Conformação Proteica , Estrutura Terciária de Proteína , Análise de Sequência de Proteína/métodos , Homologia de Sequência de Aminoácidos , Software , Proteínas da Matriz Viral/química , Vírus/química
9.
Proteins ; 79(8): 2418-27, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21633971

RESUMO

SNARE proteins and fusogenic viral membrane proteins represent the major classes of integral membrane proteins that mediate fusion of eukaryotic lipid bilayers. Although both classes have different primary structures, they share a number of basic architectural features. There is ample evidence that the fusogenic function of representative fusion proteins is influenced by the primary structure of the single transmembrane domain (TMD) and the region linking it to the soluble assembly domains. Here, we used comprehensive non-redundant datasets to examine potential over- and underrepresentation of amino acid types in the TMDs and flanking regions relative to control proteins that share similar biosynthetic origins. Our results reveal conserved overall and/or site-specific enrichment of ß-branched residues and Gly within the TMDs, underrepresentation of Gly and Pro in regions flanking the TMD N-terminus, and overrepresentation of the same residue types in C-terminal flanks of SNAREs and viral fusion proteins. Furthermore, the basic Lys and Arg are enriched within SNARE N-terminal flanking regions. These results suggest evolutionary conservation of key structural features of fusion proteins and are discussed in light of experimental findings that link these features to the fusogenic function of these proteins.


Assuntos
Proteínas de Fusão de Membrana/química , Proteínas SNARE/química , Sequência de Aminoácidos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Virais de Fusão/química
10.
Proteins ; 78(7): 1760-73, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20186977

RESUMO

For over 2 decades, continuous efforts to organize the jungle of available protein structures have been underway. Although a number of discrepancies between different classification approaches for soluble proteins have been reported, the classification of membrane proteins has so far not been comparatively studied because of the limited amount of available structural data. Here, we present an analysis of alpha-helical membrane protein classification in the SCOP and CATH databases. In the current set of 63 alpha-helical membrane protein chains having between 1 and 13 transmembrane helices, we observed a number of differently classified proteins both regarding their domain and fold assignment. The majority of all discrepancies affect single transmembrane helix, two helix hairpin, and four helix bundle domains, while domains with more than five helices are mostly classified consistently between SCOP and CATH. It thus appears that the structural constraints imposed by the lipid bilayer complicate the classification of membrane proteins with only few membrane-spanning regions. This problem seems to be specific for membrane proteins as soluble four helix bundles, not restrained by the membrane, are more consistently classified by SCOP and CATH. Our findings indicate that the structural space of small membrane helix bundles is highly continuous such that even minor differences in individual classification procedures may lead to a significantly different classification. Membrane proteins with few helices and limited structural diversity only seem to be reasonably classifiable if the definition of a fold is adapted to include more fine-grained structural features such as helix-helix interactions and reentrant regions.


Assuntos
Proteínas de Membrana/química , Proteínas de Membrana/classificação , Bases de Dados de Proteínas , Proteínas de Membrana/metabolismo , Modelos Moleculares , Canais de Potássio , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia Estrutural de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...